LORENTZIAN MANIFOLDS ;IgD;TTING A KILLING VECTOR
نویسنده
چکیده
Lorentzian manifolds admitting a Killing vector field have been studied in the literature from different points of view. Functional analysis, proper actions of Lie groups or Bochner’s technique in Differential Geometry, have been some of the very different tools involved to study them. The purpose of this paper is to review some of their properties, pointing out several techniques and supplying references. We will discuss in the next sections several properties of geodesics, isometry groups and Lorentzian tori, and some classification results. Lorentzian manifolds with few (or none) assumptions on curvature will be considered. So, we will not go through the more specific techniques developed to study space forms. (This topic has been widely studied, especially in dimension 3, and we will make just some comments about it in the last section.) In the remainder of Section 1, some notation and general properties of Killing vector fields on Lorentzian manifolds are introduced. The author acknowledges to Prof. P.E. Ehrlich for bringing to his attention some references. This work has been partially supported by a DGICYT Grant No. PB94-0796.
منابع مشابه
Periodic Geodesics and Geometry of Compact Lorentzian Manifolds with a Killing Vector Field
We study the geometry and the periodic geodesics of a compact Lorentzian manifold that has a Killing vector field which is timelike somewhere. Using a compactness argument for subgroups of the isometry group, we prove the existence of one timelike non self-intersecting periodic geodesic. If the Killing vector field is never vanishing, then there are at least two distinct periodic geodesics; as ...
متن کاملOn the Isometry Group and the Geometric Structure of Compact Stationary Lorentzian Manifolds
We study the geometry of compact Lorentzian manifolds that admit a somewhere timelike Killing vector field, and whose isometry group has infinitely many connected components. Up to a finite cover, such manifolds are products (or amalgamated products) of a flat Lorentzian torus and a compact Riemannian (resp., lightlike) manifold.
متن کاملActions of Discrete Groups on Stationary Lorentz Manifolds
We study the geometry of compact Lorentzian manifolds that admit a somewhere timelike Killing vector field, and whose isometry group has infinitely many connected components. Up to a finite cover, such manifolds are products (or amalgamated products) of a flat Lorentzian torus and a compact Riemannian (resp., lightlike) manifold.
متن کاملOn Lorentzian two-Symmetric Manifolds of Dimension-four
‎We study curvature properties of four-dimensional Lorentzian manifolds with two-symmetry property‎. ‎We then consider Einstein-like metrics‎, ‎Ricci solitons and homogeneity over these spaces‎‎.
متن کاملOn $(epsilon)$ - Lorentzian para-Sasakian Manifolds
The object of this paper is to study $(epsilon)$-Lorentzian para-Sasakian manifolds. Some typical identities for the curvature tensor and the Ricci tensor of $(epsilon)$-Lorentzian para-Sasakian manifold are investigated. Further, we study globally $phi$-Ricci symmetric and weakly $phi$-Ricci symmetric $(epsilon)$-Lorentzian para-Sasakian manifolds and obtain interesting results.
متن کامل